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NOMENCLATURE 

heat capacity ; 
constant ; 
temperature distribution function at time t, : 
thermal conductivity ; 
solution function ; 
period of heat generation ; 
amount of energy generated instantaneously per 

unit length ; 
amount of heat generated per unit length per unit 

time : 
radial position : 
time ; 
temperature : 
density ; 
transformation variable. 

INTRODUCTION 

THE PROBLEM treated in this work is 
temperature distribution in an infinite 

that of finding the 

medium during and 

following the generation of energy over a finite time period 

by an infinite line source. If the solution to a unit instan- 

taneous line source is known and integrable, the temperature 

distribution resulting from a line source can readily be 

found by integration. The solution to a unit instantaneous 

* The full support of this work by NASA under Grant No. 
NGR 14 0044OO8 (041) from the Space Nuclear Propulsion 
Office is gratefully acknowledged. 

line source is given in Carslaw and Jaeger [l] as obtained 

by Green’s functions. It is a simple expression but is not 

always easily integrable. especially if the heat generation 

rate varies with time 

SOLUTION TO LINE SOURCES AND SINKS IN AN 
INFINITE MEDIUM 

The energy equation for the region around an instan- 

taneous line source generated at time t = t’ can be written 

as 

, t > t’ 

with boundary conditions 

T(t, ‘r’) = 0 

dT 
$f.O) =o 

and global conservation ofenergy expressed as 

2nypcTrdr = Q’ 
b 

(1) 

(24 

(2b) 

CM 

where Q’is defined as the strength of the source. 
The solution to the above equations can be given in the 

form of a series (2) 

a 

T(t.r)= =s C,M, exp ( - $i2) 
~~- hn+l__ (3) 
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where the C, are constant coefficients and 

PC + 
“=‘G 0 

M, = 

@at 

(W 
F=O 

The constants, C,,, in equation (3) can be evaluated if it 
is given that at a certain time, r = t,, the temperature 
distribution function is g(r), where g(r) is an even poly- 
nomial expression of exp ( - br’j2). 

To evaluate the constants, we make use of the following 
properties of M, 

m 

MmM, 
Pexp(-n2j2)dn =O n=m (4) 

rl 
0 

= 1 II = m. (5) 

The proof of the above is given in [2]. Thus, we may write 

m 

t?(r) = c GM, exp ( - ti’l2) 
“+a to tt (6) 

where r7 is evaluated at c = t,. 
Multiplying the above by Mm and integrating between 

the limits 0 and co, we get the expression 

C 
-& = k&r)drt. 
ro 

(7) 

For instance, if g(r) = exp ( - pcr2/4kt&), the solution for 
C,is 

C, = to”+ ’ iA4” exp ( - pcr2/4ktb) dq 

c, = ton+’ 2. (- l)‘n! 

(n - j)!j! (r$t#+’ 

and upon simplification of the above, we get 

c, = t;ito - t;r 

the expression for 7’ becomes 

m 

T=tb A c (to - a 
t”+* 

f4==0 

(8) 

(9) 

It is to be noted that when t, = tb, the solution reduces to 
[since g(r) is dimensionless so is T] 

T = r, exp ( - ~‘12) 
0 t . 

This is the solution of a simple, instantaneous line source 
of strength 4nktb which was generated at time t = tb. This 
means that equation (9) is the solution of a source which 
is generated at time C’ = to - CL. Taking t’ as the time 
elapsed before the instantaneous source is generated, we 
get the following expression for a simple unit source. 

m 

T(t, r) = -& c & exp ( - #/2) ?. (10) 

The above solution is equivalent to the solution of [l] 
which can be written as 

1 exp[ -pcrZ/4k(t - t’)] 
TO, r) = 4xk 

t - t’ 
(11) 

The proof of equivalence is given in [2]. 
The advantage of equation (10) over equation (11) lies 

in the inte~ability of the former with respect to t’. The 
importance of this property can be seen in the following 
section. 

APPLICATION OF SERIFS SOLUTION OF AN 
~ST~T~EOUS HEAT SOURCE 

If the heat source is of finite duration, p, and strength 
Q(t’) per unit length, the solution to the temperature distri- 
bution is the summation of the effects of the heat source at 
differential increments At, each of which may be considered 
as an instantaneous line source generated at time t’. The 
expression for T is 

02 

x c & exp ( -$/2) + dt’. (12) 

ti 

The above is easily integrated when Q is a polynomial 
expression of t” where i is arbitrary. Thus, when Q = BP, 
we get upon integration of the above 

i> -1 

(13a) 
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FIG. 1. Temperature distribution at various times after the end of heat generation 
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FIG. 2. Temperature distribution at a given instant in time followmg the end of heat 
generation over various periods. 
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m 

T(t,r) =&pi c 1 - ~ 
n+l+i 

II=0 

P 0 
“+I M 

x - 
t 

fexp(-$/2), t > p 

i> -1 

n 

(13b) 

It can be shown thar equation (13a) converges for t, r > 0. 
The convergence of (13b) can easily be shown by comparison 
with the geometric series. 

The temperature distribution may also be evaluated 
using the integral expression of equation (11). Thus 

T = 2’ t” exp [ -pcr*i4k(t - t’)] 
4nk J t - t’ 

dt’, t < p Wla) 
0 

i> -1 

T = Aptpi exp [ -pc?j4k(t - t’)] J 4nk r - t’ 
dt’, t > p (14b) 

0 

i> -1. 

For p/t >, 1, the given solutions, ehuations (13a) and 
(14a) are equivalent to the classical exponential integral 
solution for a continuous line source. For pit < 1, the 
solution is that of a .continuous source which then decays 
when the source is shut off. 

For the case where i = 0 (constant heat generation). the 
long and short time expansions of equation (14a) are given 
on p. 262 of [l]. Equations (14a) and (14b) can also be 
integrated by a term by term integration of the series 
expansion of the integrand. The resulting expression for 
equation (14a), for t < p, is found to be easier to use than 
equation (13a) because the former converges faster. For the 
same reason, equation (13b) for t > p. is more convenient 
to use than equation (14b). Furthermore, the involved 
numerical integration for various values of p as given by 
equation (14b) is avoided by using the more accessible 
parametric representation of equation (13b). The results of 
the integration of the latter at various values of p/t for the 
important case i = 0. is shown in Figs. 1 and 2. 
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NOMENCLATURE 

A, area of flat plate boiling surface, [ft’] ; 
R,, M, average polymer molecular weight, measured by 

a viscometric method; and molecular weight in 
general ; 

ppm. solute concentration, in parts per million by 
weight; 

Q, rate of boiling heat transfer [Btu/h] ; 
AT, Tp,a,,,,,-177”, driving force for boiling cyclohexane 

at 1 atm [OF]. 


